Projects / AI Innovation Challenge

Predicting Short-Term Traffic Flow Congestion on Urban Motorway Networks

Challenge Completed!


Featured Image

The project developed a short-term traffic flow prediction model using machine learning techniques. The team collected traffic data from Canada and Europe and trained the model to predict traffic flow up to 15 minutes ahead. Various techniques, including neural networks and decision trees, were used to improve the accuracy of the predictions.

The problem

The Smart-Traffic system for real-time traffic prediction has in place a method for predicting congested road-vehicle traffic on a given roadway within a region.

In particular, the computer-implemented method utilizes real-time traffic images from traffic cameras for the input of data and utilizes computer processing and machine learning to model a predictive level of congestion within a category of low congestion, medium congestion, or high congestion. By implementing machine learning in the comparison of exemplary images and administrator review, the computer processing system and method steps can predict a more efficient real-time congestion prediction over time.

The project outcomes

There are two phases to the project outcomes:

  • Obtaining API traffic image data for a new city in Europe or North America or setting up an end-to-end solution.
  • Enhancing the model’s predictive accuracy by removing noise such as trees, dual lanes, etc. that may affect the camera’s object focus.

The podcast related to the traffic problem

First Omdena Project?

Join the Omdena community to make a real-world impact and develop your career

Build a global network and get mentoring support

Earn money through paid gigs and access many more opportunities



Your Benefits

Address a significant real-world problem with your skills

Get hired at top companies by building your Omdena project portfolio (via certificates, references, etc.)

Access paid projects, speaking gigs, and writing opportunities



Requirements

Good English

A very good grasp in computer science and/or mathematics

(Senior) ML engineer, data engineer, or domain expert (no need for AI expertise)

Programming experience with Python

Understanding of Machine Learning and/or Computer Vision



This challenge is hosted with our friends at
Logo


Application Form
Thumbnail Image
Accurately Identifying Crop Types Using Remote Sensing and Machine Learning
Thumbnail Image
Detecting Microorganisms in Water Using Deep Learning
Thumbnail Image
Skin Disease and Condition Detection using Computer Vision and Machine Learning

Become an Omdena Collaborator

media card
Visit the Omdena Collaborator Dashboard Learn More