Local Chapter Kigali, Rwanda Chapter
Coordinated byRwanda ,
Status: Completed
Project Duration: 20 May 2023 - 30 Jun 2023
Rwanda is a landlocked country located in East Africa, with a population of approximately 13 million people. Despite efforts to improve access to clean water, access remains a critical challenge, particularly in rural areas. According to UNICEF, only 47% of the population has access to basic water services, and only 32% have access to safely managed drinking water services. One of the challenges in ensuring access to clean water is predicting and monitoring water quality. Traditional water quality prediction and monitoring methods are often time-consuming, costly, and may not provide timely and accurate information. This can lead to delays in identifying and addressing water quality issues, putting public health and agricultural productivity at risk.
Machine learning has the potential to revolutionize water quality prediction and monitoring by providing a faster, more accurate, and cost-effective method for predicting water quality. By analyzing large datasets of water quality parameters, machine learning models can identify patterns and relationships between different parameters, enabling accurate predictions of water quality.
Access to clean water is a critical challenge in many parts of the world, including Rwanda. Water quality prediction is important for ensuring the availability of safe and clean water for drinking, agriculture, and other purposes. However, traditional methods for water quality prediction are often time-consuming and costly, and they may not provide accurate and timely information. To address this challenge, the Omdena Rwanda Chapter has initiated a project to develop an automated water quality prediction system using machine learning.
Week 1
Research previous work and Data Collection
Week 2
Data Collection
Week 3
Exploratory Data Analysis
Week 4
Preprocessing and feature engineering
Week 5
Model Development
Week 6
Model Training
Week 7
Model Analysis and Interpretation
Week 8
App Development
Machine Learing, preprocessing, feature extraction, machine learning modeling, and app development