Local Chapter Kano, Nigeria Chapter
Coordinated by Nigeria ,
Food prices play a crucial role in the lives of Nigerians, directly impacting affordability, food security, and economic stability. This project aims to utilize Machine Learning (ML) techniques and Python programming to analyze historical food price data in Nigeria, predict future price trends, and provide valuable insights for consumers, policymakers, and stakeholders.
The recent surge in food inflation has impacted livelihoods of Nigerians, particularly in crisis-affected areas. This additional shock has significantly affected households that were already living in fragile situations.
Governments, as well as humanitarian and development organizations, regularly monitor inflation rates to identify alarming trends and guide their actions to provide support. For example, high inflation can lead to a sharp increase in household spending needed to meet basic needs, requiring a policy response. In more extreme cases, a surge in food prices may indicate local food shortages, which signal the start or worsening of a food and nutrition crisis.
However, in many crisis situations, where conflict may make food markets inaccessible, detailed price data is not regularly collected. These disruptions often coincide with periods and locations of high price instability. The lack of data makes it difficult to assess price movements accurately – information critical for understanding the severity of conditions in these areas and informing potential responses.
Week 1
Project Preparation, Clarification and Brainstorming.
Week 2
Data Collection and Preprocessing
Week 3
Exploratory Data Analysis (EDA)
Week 4
Feature Engineering
Week 5
Model Development
Week 6
Model Evaluation
Week 7
Interactive Web Application
Week 8
Result Presentation