A team of 30 AI engineers used GEE images and Jupyter to build an app for crop yield prediction in Senegal, Africa, and improve agriculture and food security in the country.

By Praveen Kanna



In this Omdena AI Challenge with the Global Partnership for Sustainable Development Data, we created a simple but powerful application using google earth engine images to estimate crop yield in Senegal.

For food security understanding the food system is essential. Accurate crop type details in near real-time will provide insights on the food system for policymakers and will provide information on crop diversity and nutrition outcomes. So we decided to create an application using open-source satellite images to identify the crops and estimate the yields for any given area.


Challenges Encountered

1. The first challenge is to acquire the satellite images from the regions selected by the user interactively over a map.

For this, we came up with the Python package Geemap which allows users to select a region in the map and get the geo-coordinates of the selected region.


!pip install geemap
import geemap
Map = geemap.Map()


Google Earth Engine image with area of interest polygon

Selecting a region from the map — Source: Omdena


#draw a rectangle in the above map and then run this
#ROI - Region of Interest
feature = Map.draw_last_feature
ROI = feature.geometry()



{'geodesic': False,
 'type': 'Polygon',
 'coordinates': [[[-120.021748, 46.126847],
   [-120.021748, 46.126957],
   [-120.021535, 46.126957],
   [-120.021535, 46.126847],
   [-120.021748, 46.126847]]]}


2. Downloading the geo tiff file and processing the file to get the data in the form of a matrix is computationally powerful.

We used the Geemap function ‘ee_to_numpy’ for this. It converts the image collected from the Google earth engine ‘ee.image’ into ‘NumPy’ array. It doesn’t need local computational power. It is all done in Google Earth Engine itself.


import ee
def maskS2clouds(image):
  qa = image.select('QA60')
  cloudBitMask = 1 << 10
  cirrusBitMask = 1 << 11
  mask = qa.bitwiseAnd(cloudBitMask).eq(0).And(
  return image.updateMask(mask).divide(10000) 

# Load Sentinel-2 TOA reflectance data.
imageCollection = ee.ImageCollection('COPERNICUS/S2') \
    .filterDate('2016-01-01', '2016-12-31') \
    .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 5)) \
    .map(maskS2clouds) \
    .filterBounds(roi) \

rawImg = ee.Image(imageCollection.toList(imageCollection.size()).get(0))

#get the matrix for B2 band only
B2_image = geemap.ee_to_numpy(rawImg.select(['B2']), region=ROI)


3. Each band in the sentinel is of a different resolution. So the matrix we got is of different shapes for each resolution. We wanted to have all the matrices stacked on top of each other to get a single multi-channel image.


Sentinel images bands resolutions

Sentinel Dataset Band Info — Source: Google Earth Engine Data Catalog


We resized all the matrix to the high resolution (In this case 10 meters resolution) using the ‘nearest neighbor interpolation’ method.

targetSize = (50,50)
B5_Matrix = cv2.resize(B5_image,targetSize,interpolation=cv2.INTER_NEAREST)


images pixels

Source: Omdena


Creating the Application

To create the application we used ‘ipywidgets’ which is an interactive HTML widget for Jupyter Notebook, Jupyter Lab, and Ipython Kernel. Then we used Voilà to turn the Jupyter notebooks into standalone web applications.


Step 1 — Define the user interface

Sample code

#Date picker 
dateBox = widgets.DatePicker(

mapWidget = widgets.Output()
step1 = widgets.Label('Step 1: Select the date')
step2 = widgets.Label('Step 2: Select Region from the map')
step3 = widgets.Label('Step 3: Load model')
step4 = widgets.Label('Step 4: Estimate yield')
estimate_yield_debug = widgets.Label('')
getROI = widgets.Button(description='Ok')
estimate_yield_Btn = widgets.Button(description='Estimate yield')
loadModel_Btn = widgets.Button(description='Load model')

#Progress bar
progressBar = widgets.IntProgress(

#Text Area
estimate_yield_Out = widgets.Textarea(
    layout={'height': '300px'}

#Display prediction image (Matplotlib plot)
estimate_yield_plot = widgets.Output()



Step 2 — Updating the widgets

1. Updating a label

for band in bands:
    estimate_yield_debug.value = f"Processing: {band}"


screenshot of yield application

Source: Omdena


2. Reading information from date Picker

year  = dateBox.value.year
month = dateBox.value.month
day   = dateBox.value.day


Date and time settings in crop yield application

Source: Omdena



3. To display Map

Map = geemap.Map(center=[14.607989,-14.531731], zoom=7)
Map.add_basemap('Google Satellite Hybrid')
with mapWidget:


4. To trigger a function when a button is clicked

def getStatistics(change):
      some codes


5. To update the progress bar

for band in bands:
      estimate_yield_debug.value = f"Processing: {band}"
      #Update progress bar
      progressBar.value = progressBar.value +1


crop yield application Source: Omdena

Source: Omdena


6. To display matplot image

def plotResult(prediction):
    Code to visualize the prediction in the form of Matplotlib image.

    #display output
#Visualize the prediction
with estimate_yield_plot:


Crop yield application features and layout source: Omdena

Crop Yield Application layout source: Omdena



Step 3 — Create the app layout

Vertical Box (widgets.VBox) and Horizontal Box (widgets.HBox) are used to group widgets together.

Then we can use AppLayout from ipywidgets to align all the widgets in a proper way.

from ipywidgets import AppLayout
#Arrange the layout
verticalBox = mapWidget
vBox1 = widgets.VBox([step1, dateBox,vBox])
vBox2 = widgets.VBox([step2, getROI,
                      step3,loadModel_Btn,                            step4,estimate_yield_Btn,progressBar,estimate_yield_debug,yieldOutput,

          height="70%", width="150%")



Steps to run the application

1. Open the notebook


Using Jupyter Notebook to make a crop yield app - Source: Omdena

Using Jupyter Notebook to make a crop yield app – Source: Omdena


2. Click on the Voilà button


Using Jupyter Notebook and Voila button to make a crop yield app - Source: Omdena

Voila button in Jupyter Notebook to make a crop yield app – Source: Omdena


Check out the 2 mins app demo



Useful resources

Develop Your Career and Make a Real-World Impact


The world´s only place for truly collaborative AI projects to apply your skills on real-world data with changemakers from around the world.

Apply & grow your skills in our real-world projects

Upcoming AI Projects

AI Teams

Make an impact in our upcoming projects in Natural Language Processing, Computer Vision, Machine Learning, Remote Sensing, and more.

Check out our projects!

Stay in touch via our newsletter.

Be notified (a few times a month) about top-notch articles, new real-world projects, and events with our community of changemakers.

Sign up here