On the value of engineering and problem solving skills to stand out in data science. Giulio Giaconi is currently a Senior Data Scientist at Ofcom. He has 5+ years experience in both academic and industrial research and worked as a Teaching Assistant at Imperial College London where he completed an award-winning PhD thesis. After successfully completing an Omdena real-world project on applying machine learning to improve road safety, we asked him about his learnings and tips for fellow data science enthusiasts.

 

Can you describe your journey into data science? 

I graduated in telecommunications engineering and I went on pursuing a PhD in information and communication theory. I became interested in data science and machine learning during my PhD, partly because these fields flourished and gained a lot of interest in the academic community at that time. For this reason, my first job after my PhD involved researching machine learning techniques for cybersecurity at BT Applied Research. From then, I moved onto my current role as a Senior Data Scientist at Ofcom.

I think that the problem-solving mindset that I acquired during my engineering studies was crucial in helping me transition into data science. I believe that to be a data scientist it is really important to learn how to formulate a problem in the right way, understand and formalize its hypotheses, and set out a plan to address it, which are all skills that can be developed with any engineering, scientific or numerate education.

The best advice I´ve gotten a while ago that I want to share is:

Take your time exploring and fully understanding your data before using any machine learning technique or developing any model on it. Although this may be seen as a boring activity, this is in fact a crucial way to understand the problem as much as possible and get some vital intuitions about how to solve it.

 

Can you share a point in your career where things got a bit difficult? And how did you overcome roadblocks? 

One of the most difficult points during my career occurred perhaps at the very beginning of my transition into my first data science job. I was juggling two tasks: wrapping up my PhD research and dissertation on information theory while trying to learn as much as possible about a technical field, machine learning, which I had only briefly touched before. Back then, I remember splitting my time very rigorously between the two tasks and my working days ended up being really long. What really helped me was setting out a very clear and feasible schedule for both tasks, to avoid losing focus and motivation.

More generally, when I experience roadblocks and difficulties I tackle them with an open mind and eagerness to learn. Also, if a problem is technical, luckily these days it is easy to find a great deal of accessible information online – this is true especially for the machine learning and data science fields.

I also want to stress that there is a large number of capable professionals that can help you with either technical problems or even with questions on career and who can be reached online, be it on social media or directly on more technical sites like StackOverflow or GitHub. I truly recommend reaching out to people you think may help with technical but also more general career-related questions – you may be surprised by how many people are willing to help if you reach out with a genuine question and an open mind. 

 

How did the Omdena experience help you? What tips can you give to current Omdena collaborators?

Omdena gave me the opportunity to work on a topical global challenge, preventing road accidents worldwide, by using a variety of machine learning techniques, and I really appreciated the fact that I could use my skills on a project tackling such a crucial problem. Although I was already familiar with most of the techniques used during the project, I still gained a number of insights, thanks to the contributions of very skillful collaborators and the considerable amount of information that was continuously shared.

Moreover, what I particularly liked about Omdena was the collaborative and social dimension of the project. I really enjoyed the fact that from the very beginning I felt part of a community because of the so many enthusiastic and supportive peers that I was surrounded by, all of us set to solve the one challenge together. I think this is a pretty distinctive feature of Omdena compared to other ways to learn and practice data science skills, and this opportunity definitely helped me test and improve my soft skills too, e.g. communication, organizational, and leadership skills.

My main advice to current and future Omdena collaborators is to engage as much as possible during the weekly meetings, be inquisitive, and offer constructive feedback and advice to each other. While working on the project, you should strive to create a safe space where everyone feels free to give their opinions, and you should challenge others fairly but also expect to be challenged at the same time.

 

Any closing words?

Now it’s an exciting time to start building a career in data science and there are countless opportunities for people who want to strive in this domain. There are many ways to learn about data science and machine learning, including books, online courses, challenges, tutorials. More importantly, I would definitely recommend getting your hands dirty on a real problem using actual data. For this reason, I strongly encourage working on an Omdena challenge, not only to quickly get up to speed with data science and machine learning but also and more importantly to have the chance to solve key challenges affecting millions of people globally.

Develop Your Career and Make a Real-World Impact

Innovation

The world´s only place for truly collaborative AI projects to apply your skills on real-world data with changemakers from around the world.

Apply & grow your skills in our real-world projects

Upcoming AI Projects

AI Teams

Make an impact in our upcoming projects in Natural Language Processing, Computer Vision, Machine Learning, Remote Sensing, and more.

Check out our projects!

Stay in touch via our newsletter.

Be notified (a few times a month) about top-notch articles, new real-world projects, and events with our community of changemakers.

Sign up here