Projects / AI Innovation Challenge

Predicting Future Infrastructure Needs in Africa for Policy Makers

Challenge completed!


Featured Image

The African Center for Economic Transformation (ACET) seeks to leverage AI to predict infrastructure needs within Africa to build a better future and create opportunities across countries.

The Problem

African governments are using significant portions of public budgets to finance infrastructure, but that infrastructure often responds to past or current needs, not future needs based on expected changes related to climate change, migration, urbanization, etc. Given limited fiscal space, African governments need to use all tools available to ensure the infrastructure being built today best serves the people of Africa for the next 50 to 100 years.

In this Omdena Challenge, a global community collaborated to predict the infrastructure needs of several African countries. We looked into various data sources such as satellite images, socio-economic data, climate, and topological data, population and demographic data, Google Trends, Google business data, social media data (to understand aspirations, needs, and sentiments of people living in the region), and other openly available data. The goal was to model the current situation, past temporal changes in population, infrastructure, etc., then predict future demands of infrastructure.

The Project Outcomes

As a team, the aim was to accomplish the following objectives:

  • Building one or multiple models for the future infrastructure needs of Africa (we will limit to selected groups of countries and certain types of infrastructure)
  • Modeling the aspirations of people in the given region of the world
  • Providing recommendations regarding verification approaches and networks to help scale to other countries

The Results

The Omdena team looked at the problem from different angles and used all tools to deliver the best solution. Like natural language processing, remote sensing, route planning, data analysis, and machine learning modeling. An interactive dashboard using Streamlit was implemented that makes it easier for the user to go around important and available data and predictions to make better policies and decisions.

A demo of the StreamLit dashboard

The dashboard gives visualizations and predictions to 5 main objectives:

  • Tweet analysis
  • African countries population
  • Electricity access
  • Distance calculations to vital amenities
  • Water stress index

To read more about the work done and methodologies used, check the articles attached below.



Your benefits

Join a thriving AI community in 85 countries

Work with changemakers from around the world

Adress a real-world problem with your skills

Build up your skill-set while setting the stage for a meaningful career



Requirements

Good English

A good/very good grasp in computer science and/or mathematics

Student, (aspiring) data scientist, (senior) ML engineer, data engineer, or domain expert (no need for AI expertise)

Programming experience with C/C++, C#, Java, Python, Javascript or similar

Understanding of ML and Deep learning algorithms



This challenge has been hosted with our friends at
Logo


Application Form
Thumbnail Image
Accurately Identifying Crop Types Using Remote Sensing and Machine Learning
Thumbnail Image
Optimizing & Deploying Climate and Credit Risk Scoring for African SMEs With AI
Thumbnail Image
Map Solar Penetration and Productive Uses of Renewable Energy in Kenya

Become an Omdena Collaborator

media card
Visit the Omdena Collaborator Dashboard Learn More